Search

136 results found for embeddings (1372ms)

Code
127

- `imageRecognition.labels`: Visual elements detected (people, objects, logos,
etc.)
- `vectors`: Text embeddings for semantic similarity (using Basilica method)
- **Content metadata fields** (may not yet be generally populated):
- `description`: Manual content descriptions
- `imageRecognition.labels`: Visual elements detected (people, objects, logos,
etc.)
- `vectors`: Text embeddings for semantic similarity (using Basilica method)
- **Content metadata fields** (may not yet be generally populated):
- `description`: Manual content descriptions
"slug": "val-vibes",
"link": "/blog/val-vibes",
"description": "How to build semantic search with embeddings for Val Town within Val Town it
"pubDate": "Tue, 18 Jun 2024 00:00:00 GMT",
"author": "JP Posma",
contents: [query],
});
const values = result.embeddings[0].values;
const queryResult = (await qdrant.search("wdl", {
vector: values,
return handleCompletions(await request.json(), apiKey)
.catch(errHandler);
case pathname.endsWith("/embeddings"):
assert(request.method === "POST");
return handleEmbeddings(await request.json(), apiKey)
.catch(errHandler);
case pathname.endsWith("/models"):
}
const DEFAULT_EMBEDDINGS_MODEL = "gemini-embedding-001";
async function handleEmbeddings (req, apiKey) {
let modelFull, model;
switch (true) {
break;
default:
model = DEFAULT_EMBEDDINGS_MODEL;
}
modelFull = modelFull ?? "models/" + model;
let { body } = response;
if (response.ok) {
const { embeddings } = JSON.parse(await response.text());
body = JSON.stringify({
object: "list",
data: embeddings.map(({ values }, index) => ({
object: "embedding",
index,
transactions Shows transaction usage: starting, performing operations, and committing/rolling ba
memory Uses an in-memory SQLite database for temporary storage or fast access.
vector Works with vector embeddings, storing and querying for similarity search.
encryption Creates and uses an encrypted SQLite database, demonstrating setup and data operation
ollama Similarity search with Ollama and Mistral.
transactions Shows transaction usage: starting, performing operations, and committing/rolling ba
memory Uses an in-memory SQLite database for temporary storage or fast access.
vector Works with vector embeddings, storing and querying for similarity search.
encryption Creates and uses an encrypted SQLite database, demonstrating setup and data operation
ollama Similarity search with Ollama and Mistral.
"Connectors stream data from IoT/APIs/DBs into JetStream.",
"Persist to Streams + mirror across regions for locality.",
"Use KV/Object Store for embeddings & RAG artifacts.",
],
},
"slug": "val-vibes",
"link": "/blog/val-vibes",
"description": "How to build semantic search with embeddings for Val Town within Val Town it
"pubDate": "Tue, 18 Jun 2024 00:00:00 GMT",
"author": "JP Posma",
"slug": "val-vibes",
"link": "/blog/val-vibes",
"description": "How to build semantic search with embeddings for Val Town within Val Town it
"pubDate": "Tue, 18 Jun 2024 00:00:00 GMT",
"author": "JP Posma",
tmcw
surprisingEmbeddings
Visualizing embedding distances
maxm
emojiVectorEmbeddings
 
janpaul123
blogPostEmbeddingsDimensionalityReduction
 
janpaul123
compareEmbeddings
 
yawnxyz
embeddingsSearchExample
 

Users

No users found
Embedding Vals in other sites. Copy page Copy page. Copy this page as Markdown for LLMs. View as Markdown View this page as plain text. Open in ChatGPT Ask questions
Register a new Slash Command. Section titled “Step 5: Register a new Slash Command” The embedded code below should have your name in the top-left corner. If you see anonymous,