Search

141 results found for embeddings (2631ms)

Code
132

"slug": "val-vibes",
"link": "/blog/val-vibes",
"description": "How to build semantic search with embeddings for Val Town within Val Town it
"pubDate": "Tue, 18 Jun 2024 00:00:00 GMT",
"author": "JP Posma",
"slug": "val-vibes",
"link": "/blog/val-vibes",
"description": "How to build semantic search with embeddings for Val Town within Val Town it
"pubDate": "Tue, 18 Jun 2024 00:00:00 GMT",
"author": "JP Posma",
"slug": "val-vibes",
"link": "/blog/val-vibes",
"description": "How to build semantic search with embeddings for Val Town within Val Town it
"pubDate": "Tue, 18 Jun 2024 00:00:00 GMT",
"author": "JP Posma",
"slug": "val-vibes",
"link": "/blog/val-vibes",
"description": "How to build semantic search with embeddings for Val Town within Val Town it
"pubDate": "Tue, 18 Jun 2024 00:00:00 GMT",
"author": "JP Posma",
- `imageRecognition.labels`: Visual elements detected (people, objects, logos,
etc.)
- `vectors`: Text embeddings for semantic similarity (using Basilica method)
- **Content metadata fields** (may not yet be generally populated):
- `description`: Manual content descriptions
- `imageRecognition.labels`: Visual elements detected (people, objects, logos,
etc.)
- `vectors`: Text embeddings for semantic similarity (using Basilica method)
- **Content metadata fields** (may not yet be generally populated):
- `description`: Manual content descriptions
- `imageRecognition.labels`: Visual elements detected (people, objects, logos,
etc.)
- `vectors`: Text embeddings for semantic similarity (using Basilica method)
- **Content metadata fields** (may not yet be generally populated):
- `description`: Manual content descriptions
"slug": "val-vibes",
"link": "/blog/val-vibes",
"description": "How to build semantic search with embeddings for Val Town within Val Town it
"pubDate": "Tue, 18 Jun 2024 00:00:00 GMT",
"author": "JP Posma",
contents: [query],
});
const values = result.embeddings[0].values;
const queryResult = (await qdrant.search("wdl", {
vector: values,
return handleCompletions(await request.json(), apiKey)
.catch(errHandler);
case pathname.endsWith("/embeddings"):
assert(request.method === "POST");
return handleEmbeddings(await request.json(), apiKey)
.catch(errHandler);
case pathname.endsWith("/models"):
}
const DEFAULT_EMBEDDINGS_MODEL = "gemini-embedding-001";
async function handleEmbeddings (req, apiKey) {
let modelFull, model;
switch (true) {
break;
default:
model = DEFAULT_EMBEDDINGS_MODEL;
}
modelFull = modelFull ?? "models/" + model;
let { body } = response;
if (response.ok) {
const { embeddings } = JSON.parse(await response.text());
body = JSON.stringify({
object: "list",
data: embeddings.map(({ values }, index) => ({
object: "embedding",
index,
tmcw
surprisingEmbeddings
Visualizing embedding distances
Public
maxm
emojiVectorEmbeddings
 
Public
janpaul123
blogPostEmbeddingsDimensionalityReduction
 
Public
janpaul123
compareEmbeddings
 
Public
yawnxyz
embeddingsSearchExample
 
Public

Users

No users found
Embedding Vals in other sites. Copy page Copy page. Copy this page as Markdown for LLMs. View as Markdown View this page as plain text. Open in ChatGPT Ask questions
Register a new Slash Command. Section titled “Step 5: Register a new Slash Command” The embedded code below should have your name in the top-left corner. If you see anonymous,